Synthesis, Characterization, and Application of Magnetized Lanthanum (III)-Based Metal-Organic Framework for the Organic Dye Removal from Water
نویسندگان
چکیده
A hybrid composite based on metal-organic framework (MOF) was chemically fabricated by embedding the magnetic Fe3O4 nanoparticles within amino-functionalized porous La-MOF (MOF/NH2) to produce a highly efficient and reusable of MOF/NH2/Fe3O4. Different proper techniques were used for characterization surface morphology chemical arrangement prepared MOF/NH2/Fe3O4 composite. The results using various including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer, Emmett, Teller analysis (BET), vibrating sample magnetometer (VSM) approved successful fabrication MOF with amino arms its besides well magnetization nanoparticles. showed enhanced adsorption capacity (618 mg/g) toward methyl orange (MO) anionic dye which is higher than many commercial reported adsorbents due presence types sites (NH2 groups lanthanum sites), large area MOF, synergetic effect Moreover, selective MO from mixtures owing electrostatic attraction. Also, retained over 90% efficiency removal even after six successive cycles. So, present study provided practical strategy design functional composites. Furthermore, adaptability architectural form, it potential adsorbent material industrial wastewater treatment uses.
منابع مشابه
Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water
A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid...
متن کاملSynthesis of Nanoporous Metal Organic Framework MIL-53-Cu and Its Application for Gas Separation
MIL-53-Cu has been synthesized hydrothermally and has been used for the first time for gas separation. MIL-53-Cu shows adsorption capacities of 8.1, 0.7 and 0.5 m.mol/g, respectively, for CH4, CO2 and H2 at 30 bar and 298 K. The high CH4 adsorption capacity of MIL-53-Cu maybe attributed to the high pore volume and large number of open metal sites....
متن کاملSynthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors
Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...
متن کاملEfficient removal of cobalt(II) ion from aqueous solution using amide-functionalized metal-organic framework
In this study, an amide-functionalized metal-organic framework, namely TMU-24 was selected to adsorb Co(II) from wastewater with an adsorption capacity of 500 mg. g-1 in less than 20 minutes in neutral pH (pH=7). The effect of diverse parameters such as adsorbent dosage, competitive ions, and contact time on the adsorption process was investigated to find the optimal amounts of them. Also, the ...
متن کاملOptimization of solvothermally synthesized ZIF-67 metal organic framework and its application for Cr(VI) adsorption from aqueous solution
In this study, ZIF-67 was synthesized through solvothermal method to remove Cr(VI) ions from aqueous solution. To improve the structural properties of ZIF-67 and its adsorption capacity, optimization of the synthesis conditions was carried out based on maximum Cr(VI) uptake. From experiments, the optimum condition was revealed as solvent: metal ion molar ratio of 4.6:1, ligand: metal ion molar ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Adsorption Science & Technology
سال: 2022
ISSN: ['2048-4038', '0263-6174']
DOI: https://doi.org/10.1155/2022/3513829